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SUMMARY

A scheme for obtaining exact potential-flow patterns
in & compresslble fluld isg presented, The method 1s based
on a complex-function theory developsd recently for the
golutions of the simultaneous first-order partial differ-
ential equations in the hodograph variables, The pro-
cedure suggested is to take a glven incompressible-flow
pattern given by an anaslytlic function and to replace thils
function by an associated complex function, a solution of
the compressible~flow equations, which will represent an
assoclated compresslble~flow pattern, Thie method formally
solves the problem for obtainlng an exact flow past a body
in a compressldle flulid; however, before such general flow
patterns can be obtained, the new complex functions in-
volved muat first be studled and tabulated,

INTRODUCTION

This paper 1s intended %0 outline or sketch a process
for creating flow patterns-of a compreseible fluid dy means
of a generallszed concept of a complex variable. It is
known that the present modes of trezting this problsam are
essentlall: of an approximate nature. For exemple, the
methods of Prandtl and Glauert, Ackeret, Pogegl, Janzsen and
Raylelgh, and others are of an 1terative nature and, after
one or two gteps, become unmanacgeable, Recently Ringlsh,
following Chaplygin's original memoir published in 1904, ob~
tained exact solutions of the differsntial esquations for
compressible flows corresponding to a source and a vortex,
Ringleb?!s approach, however, doess not appear to yield a
general process for handling the problem.

It 1 belleved that the method outlinad inm this paper
le a natural approach to the solution of the problem, The




mathematical background for the detalls of the method has
already been developed. (Ses reference 1.) Only those
steps essential to the process are given herein.

THEORETICAL BACKGROUND

It 1s woll known that the relations between the poten=
tial function ® and the stream function V¥ 1in the incon=-
pressible case are ' )

(py) ' (1)

These equations will be referred to as the Py (physical,
incompressible) equations. Since equations (i) are tho
Cauchy~Biemann equatiors, £ = @ + iV is an analytic
function of a complex variable =z = (x + 1y). It follows
then that the reflected veloclity vector 1s

— = u - iv = qe'ie (2)
dz

where q 1g the magnitude of the velocity and B8 1ig ihe
angle the veloclty voctor makes with the x—-axisg.

If q and 9 eare introduced as independent vatrlables,
equations (1) take on the form

dg = v, |
U (my) (3)

¢q = -i WGJ

These equations will be referred to as the Ei (hodograph,
incompressible) aquations.



The equations corresponding to equations (1), in the
compressible case, ara

(2,) (@)

where p 1g the density of the fluid and po the stagna=-
tion (q = 0) density, These squations will be refarred to
a8 the (physioal, compressibla) equations. BSince o

is a funo%ion of @z and » equations (4) are nonlinear
in character and tharefors are, in general, too difficult

to handle, It wes Pirst noticed by Molendroesk and later

by Chaplygin that, if 6 and q are chosen as the in-
dependent variables, then the equatlione correspondiag to
equations (4) are linear in character. In the new inde=-
pendent varlables the equatlons become

Pg = —
o 4
> (Ey) (6)
(1-u°) I
¢q B e EL_:_..._.*ei
Pa 7.

where M2 = q3/a® and a ie the velocliy of sound corraw
sponding to q.

It 18 remarked that. for  given ataghation conditions
both p and M are functions of gq only, Thus, the
coaefficients of and Vg are functions of gq only,
and aquations (5) ars therefore linepr. The equationes
for p and MN®- arse '

1 )
1 :
pup(l.._y-l-.gf-)
e : 2 8,® "
(6)

a qa (
N = Y-1.8
I




wvhere
&, stagnation veloclity of sound
h § ratlo of specific heats at constant volume and cone.

stant pressure

It has been proved in reference 1 that, if @¢(6,q)
and V(0,3) satisfy equations. (5), then

F(0,0) =0 + 1P = fe'q (d-gie - po.(‘l ~ ¥ *dq)

LT PR . PR
A,q P
+ 1 Jf (&de + — ¢d;> (7)
el'ql ; - poq-

is & complex function of the end point (0,1), independent
of the path of integration, whose real ard lmaginary perts
® end § also satisfy equations (5), The lower limits
8, and a; may be arbitrarily chosen., ZTFor most purposes
it is convenlient to choose g, = qp, where gqp 18 %he

maximun possidble velocity, given by

3 3
W = /57T % /28 (8)

If, now, f =@ + 1V = 1 + 10, then the line integral
of - ecuation (7) yields

q.

(1) ' P (
o + 2 ¥ =0 + 1 —_— g9)
1y f‘h Po‘lq

By repeated application of the foregolng proeess an
unlimited number of particular solutions of equations (5)
‘can be obtained, Thus



(8) 5 93 z'f Po f d J.q"q-aief — dq
a, P Yo pae UG pol
(3) * K p o (1-K") p
L CE —— 2 ——dq®
9"+ 31 ‘/;1 Poqdq 362!£1 e ‘/‘1‘; poqq
> (10)

vi®) .

(See reference 1.)

Similarly, when f ='0 + i, e complementary set of
particular solutions of equations (5) are obtained, These
take on the form

q ~
q(2) p o (1-1®)
1% 1 (a + 1j;1 — dq_>
~ (8 4 1 (1-M2)
1w()=1(e°—3!f -f—f Po ag?
_ 1, Pol e, Pa S (11)
po(1-H3) |
+ 210 q
[
1;(n) 2 4 o e 7

(See reference 1.) If Y 4g chosen as 7/5, the evaluation
of the integrals 1s simplified. -

¥Yhen the fluid is inoompres 313 (that ig. a= ®m, or
H= 0, p=p,), the solutions and 1W(n) reduce to




solutions of equatioans (3) and become, respectively,

(6 + 1 log q)2 and 1(6 + 1 log q)®, That theso are
solutions of equations (3) can easily be verified. It

is precisely this correspondence between the solutions of
equations H, and H, that suggests the process (given
in the following section) of assoclating a compressible
flow with an incompressible flow.

Since equations (5) are linear, any linear combination

w(a)- 15 (2)

of the solutions and

that 1s,

are agaln solutions;

A wi®) o B, 1ﬁ(n)>

where ¢ and B are real constantse, 1s a solution of the
system o? equations (6). It may be pointed out, furtharcore,

that tho solutions W) ana 1¥‘®) are of elliptic tyoe in
one part of tho range of q and of hyperbolic type 1a ‘the
other part of tho range of g,

OONVERSION FROM Hy; TO P, AND FROM H, T0 P,

In the incomnressible case the same order of mathematical
difficulty oxists in going from the solutions of the P,
equations to the solutions of the H equations as oxists
in the revarse process, In tho comprsssible case, however,
it 18 at present nocessary to proceed from the solutions of
the Ec equations to the solutions of the P, equations.

_ et Q=@ +« iV reprosent a .flow pattern in the incom—
pressible care, It is known that the reflacted velocity
vector 1s

aQ o 18
iz = ¢

It i3 convenient to introduce the wvariabvle

11 aa B+ 11 (» ) (
w = og i + 0 q = By 12)



wvhich is a solutlion 4f the H; equations. Then

D M

a -
9!— - 9 iv , . (13)
ds .

Ir Q(x) 1s regardtz &» u Tanction of w, equation (13)
can be integrated; %

. 'f’“ 59_%“'%1 av  (B—aP,)  (14)

Tquation (12) may be considered the transformation that
converts solutions - of the P equations to solutions of the
H1 equations, and egquation %14) may be ccnsidered ns the
traneformation that converts asolutione of the Hy eauations
to solutions of ths Pi equations.

As an example, conslder the simple case of a source of
strength m at the origin in the physical plane., Thus

Q=@+ 1V 2 = log = (15)
2m

Then, from equation (12),

11 -
W = (o] ermen——
& ens
or
m m m
ni = -5“— iw + s;‘- log "5“" (16)

Thus, 3 a8 a function of z 318 given by equation (15)
and, a8 a function of w, by equation (16).

If € had been preassigned as a function of w, a
solution of the H; equations, then by the use of equation




(14) =2 18 obtained as a fumction of w, BSolving for

w 1in termas of g and. subetituting w back into the pre—
assigned funcbticn gives 2 as a function of =z, Tor ex—
snple, glven the relation expressed by equation (16), =
aqlution in the physical plane, from equation (14)

g = elv

=
2

is obtailnsd., Solving for w 1in terms of % and substi-—
tuting in equation (16) gives equation (15), which is i1denti-—
fied as mn source of strength m. This 1is the process of
golng from the solutions of the E equations to the solu—
tions of the P, equations (Hi—g-%i).

In the compressiblo case, the corresponding process of
golng from the solutions of the H, equations to the solu~—
tions of the P, equations (B,—=P,) 1s followed in this
paper. ¥or this purpose a relation analogous to that of
equation (14) is nocessary. This relationship is givon by
the palr of  knowa equations:

. dx:(cos e ¢‘q.__po sin © wq)ﬂq(co: 0 qe _ Po 'ﬂ-ix! B-w9>dew

14 2] Pq

? (17)

sin 0 po cos 8 gin @ . p, cos ©
d.y=( - Pq+ \p)dq+( A+ '.i;)d.e
q Pg P qa 8 pe. 0 »

By simple algebra, equations (17) can be arrived at by uso
of equations (5). It 18 usoful to besr in uind, solving a
particular problem, that equations (17) are exact differ-—
entials, .

As an exanple, conslder the solution of the E, equa~—
tions given by

._a .
Qc=¢+1\v=ii'=i<9+if po<1H)d9_> (18)
pa .




Heore

and

If partial derivatives arc teaken and substituted in equa~—
tion (17), the following equations are ovtained:

p°<l—H=) cos 6 Po gin O h
dx = — . dq = =2 ——— 40
Pa Pa
(19)
iy = — po(1-#®) sin @ aq + B0 cos
pq? . PQ 3

By unce of the relation

-]
G _ _ ot
dq

- q

the pailr of functions of whioh equantions (19) are the exact
differentials are rocognized as

Po cos O
Pq

XX =

Po gin 6

yﬂ—'—-——

Pq

If each side of the two equations 1s squared pnd suamed,
the following equation 18 obtained
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x% 4 y8 = v o PO‘/p’q' (20).

Bquation (20) implies that the product of the density
and the veloclty varies inverscely as the distance froam the
origin,

In order to ldentify the character of the potentigl
and stream lines, @ and V are sot equal to constants;

that 1is,
(1-M2)
p"""fpo dq = ¢,
pa

and
v z 0.a ;g
_The stream lines
@ = constant
are radial lines, and the pot;ntial lines

Po (I-HB)

>

are concentric circles, Tﬁis flow pattern 1ig therefore
that of a source.

dg = consbtant

It 18 of interest to observe that by a similer process
the solution

Q=W =0 + 1d/' L a
G = ¥ P ¢

can be shown to represent a vortex in a compresslible fluld
in the physical plene.
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In the incompressibls case, the source in the 0,q-
plane is given by 4w and, in the compresslble case,  the

"+ ''gource 4in the 0 ,q~plane is given.Dby . %, . ... .

The qualitative similarity betweep the quantitles w
and ¥ and the quantities 1w and 1iW can easily be
recognized., It 1s thils gualitative ginilarity between the
solutions of the H; equations and the H; equations that
serves, in a sense, %o pick out the Pugseful® solutions of
the H, equations from the unlimited number of solutiona

given by the expresslon
z:(«.n win) 4 p_ 1F(n)>

pararetric in a, and PB,. The following procedure may bYe
ueed: Given a Tuserul® flow pattern Sl of an incompressi-
ble fluid in the physical plane, convart tkis pattern intc =
pattern in the Hy plane; that 1a, coavert Uy 1iato a func—
tién of w and iw. Expand ¢ in a power scries:

Q =2 (an v + B, un) (21)

Then, the compressible flow given by

Q, = z(a,n wiz) Bn ﬁr(n)) (22)

where the real constante a, and B, are the game ae in
equetion (21), is the essoclated compressible—flow pattern
of the incompressible—flow pattern given by equation (21).

If equation (21) represents an incoupressible flow
past a body By, then egquation (22) represents a com—
presgible flow vast an associated body Byy which may be
distorted from By - by.some factor depeniing on the Hach
nurber., When the body B, 1s obtained, well-known methods
-(reference 2) can be ueed to fiad the inconpressible flow
past By in order that the two flow patteras about 3B,
cal be compared and stmndled for a given Mach number,

If the comprbsiible flow about a preassigned body is
desired, 1t will be nocessary to start with a body 33
that is distorted in the opposite direction,
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. ¥inally, it 1s emphasired that, 1n order to obtaln
g sultable computaticnal procedure for the. process mentioned-
in thia paper, the functions correspondiag to the slemon—
fary functions - for example, sine, exponential, and loza~-
*i{thm — must be studied and tadbulated. Some inforustion
concerning thege functione can be found 1ln roféremnce 1,

Langley Memorial Aeronautical Laborstory,
Hational Advigory Committee for Aeronautics, .
Langley Field, Va. '
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